Path Ideals for Weighted Graphs

Sean Sather-Wagstaff

North Dakota State University

Date 03 November 2013 AMS Western Section Meeting University of California at Riverside Joint with Bethany Kubik and Chelsey Paulsen

Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Definition (Villareal '90)

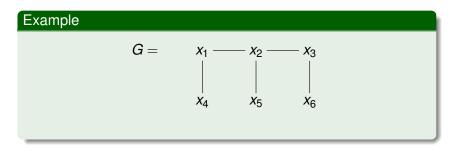
The edge ideal $I(G) \subseteq S$ of G is $I(G) = (x_i x_j \in E)S$.

Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Definition (Villareal '90)

The edge ideal $I(G) \subseteq S$ of G is $I(G) = (x_i x_j \in E)S$.



Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Definition (Villareal '90)

The edge ideal $I(G) \subseteq S$ of G is $I(G) = (x_i x_j \in E)S$.

Example $G = \begin{array}{c} X_1 & \cdots & X_2 & \cdots & X_3 \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & &$

Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Definition (Villareal '90)

The edge ideal $I(G) \subseteq S$ of G is $I(G) = (x_i x_j \in E)S$.

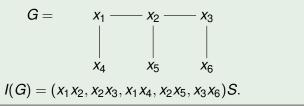
Example $G = x_1 - x_2 - x_3$ $\begin{vmatrix} & & \\$

Assumption

k is a field, $S = k[x_1, ..., x_d]$, and G = (V, E) is a (finite simple) graph with $V = \{x_1, ..., x_d\}$.

Definition (Villareal '90)

The edge ideal $I(G) \subseteq S$ of G is $I(G) = (x_i x_j \in E)S$.



Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Fact

We have (irredundant) irreducible decompositions

$$\mathcal{U}(G) = \bigcap_{\mathcal{W}} (\mathcal{W})S = \bigcap_{\mathcal{W} \ min} (\mathcal{W})S$$

Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Fact

We have (irredundant) irreducible decompositions

$$V(G) = \bigcap_{W} (W)S = \bigcap_{W \ min} (W)S$$

$$G = x_1 - x_2 - x_3$$

 $| | | | |$
 $x_4 - x_5 - x_6$

Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Fact

We have (irredundant) irreducible decompositions

$$V(G) = \bigcap_{W} (W)S = \bigcap_{W \ min} (W)S$$

$$I(G) = (x_1, x_2, x_3)S \cap$$

Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Fact

We have (irredundant) irreducible decompositions

$$V(G) = \bigcap_{W} (W)S = \bigcap_{W min} (W)S$$

Example

 $I(G) = (x_1, x_2, x_3)S \cap (x_1, x_2, x_6)S \cap$

Definition

A vertex cover of *G* is a subset $W \subseteq V$ such that for every $x_i x_j \in E$, either $x_i \in W$ or $x_j \in W$.

Fact

We have (irredundant) irreducible decompositions

$$V(G) = \bigcap_{W} (W)S = \bigcap_{W min} (W)S$$

$$G = \begin{array}{ccc} x_1 & --- & x_2 & --- & x_3 \\ | & | & | & | \\ x_4 & x_5 & x_6 \end{array}$$
$$I(G) = (x_1, x_2, x_3)S \cap (x_1, x_2, x_6)S \cap (x_1, x_3, x_5)S \\ \cap (x_2, x_3, x_4)S \cap (x_2, x_4, x_6)S \end{array}$$

Theorem (Villareal 1990)

If T is a tree, then S/I(T) is Cohen-Macaulay if and only if I(T) is unmixed, if and only if T is a suspension of a tree. (Hence, Cohen-Macaulayness of S/I(T) is characteristic-independent.)

Theorem (Villareal 1990)

If T is a tree, then S/I(T) is Cohen-Macaulay if and only if I(T) is unmixed, if and only if T is a suspension of a tree. (Hence, Cohen-Macaulayness of S/I(T) is characteristic-independent.)

Example T = $x_1 - x_2 - x_3$ | | x_4 x_5 S/I(T) is Cohen-Macaulay.

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$.

A weighted graph G_{ω} is a graph G, with a weight function ω .

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$. A weighted graph G_{ω} is a graph *G*, with a weight function ω .

Definition (Paulsen-SW '13)

The weighted edge ideal $I(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is

$$I(G_{\omega}) = (x_i^{\omega(e)} x_j^{\omega(e)} \mid e = x_i x_j \in E)S.$$

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$. A weighted graph G_{ω} is a graph *G*, with a weight function ω .

Definition (Paulsen-SW '13)

The weighted edge ideal $I(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is

$$I(G_{\omega}) = (x_i^{\omega(e)} x_j^{\omega(e)} \mid e = x_i x_j \in E)S.$$

Example

Sean Sather-Wagstaff Path Ideals for Weighted Graphs

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$. A weighted graph G_{ω} is a graph *G*, with a weight function ω .

Definition (Paulsen-SW '13)

I(

The weighted edge ideal $I(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is

$$I(G_{\omega}) = (x_i^{\omega(e)} x_j^{\omega(e)} \mid e = x_i x_j \in E)S.$$

$$G_{\omega} = \begin{array}{ccc} x_{1} & \frac{3}{2} & x_{2} & \frac{1}{2} & x_{3} \\ & 2 & & & & & \\ & 2 & & & & & \\ & x_{4} & & x_{5} & & x_{6} \end{array}$$
$$G_{\omega}) = (x_{1}^{3} x_{2}^{3},$$

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$. A weighted graph G_{ω} is a graph *G*, with a weight function ω .

Definition (Paulsen-SW '13)

The weighted edge ideal $I(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is

$$I(G_{\omega}) = (x_i^{\omega(e)} x_j^{\omega(e)} \mid e = x_i x_j \in E)S.$$

Definition

A weight function on *G* is a function $\omega \colon E \to \mathbb{N}$. A weighted graph G_{ω} is a graph *G*, with a weight function ω .

Definition (Paulsen-SW '13)

The weighted edge ideal $I(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is

$$I(G_{\omega}) = (x_i^{\omega(e)} x_j^{\omega(e)} \mid e = x_i x_j \in E)S.$$

$$G_{\omega} = \begin{array}{ccc} x_1 & rac{3}{2} & x_2 & rac{1}{2} & x_3 \\ & 2 & 4 & 5 \\ & x_4 & x_5 & x_6 \end{array}$$

 $U(G_{\omega}) = (x_1^3 x_2^3, x_2 x_3, x_1^2 x_4^2, x_2^4 x_5^4, x_3^5 x_6^5) S.$

Definition

A weighted vertex cover W^{σ} of G_{ω} is a vertex cover $W \subseteq V$ with a function $\sigma \colon W \to \mathbb{N}$ such that for every $e = x_i x_i \in E$, one has

1
$$x_i \in W$$
 and $\sigma(x_i) \leq \omega(e)$, or

2
$$x_j \in W$$
 and $\sigma(x_j) \leq \omega(e)$.

Set $(W^{\sigma})S = (x_i^{\sigma(x_i)} | x_i \in W)S.$

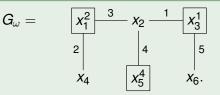
Definition

A weighted vertex cover W^{σ} of G_{ω} is a vertex cover $W \subseteq V$ with a function $\sigma \colon W \to \mathbb{N}$ such that for every $e = x_i x_i \in E$, one has

1
$$x_i \in W$$
 and $\sigma(x_i) \leq \omega(e)$, or

2
$$x_j \in W$$
 and $\sigma(x_j) \leq \omega(e)$.

Set $(W^{\sigma})S = (x_i^{\sigma(x_i)} \mid x_i \in W)S.$



Definition

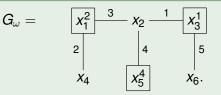
A weighted vertex cover W^{σ} of G_{ω} is a vertex cover $W \subseteq V$ with a function $\sigma \colon W \to \mathbb{N}$ such that for every $e = x_i x_i \in E$, one has

1
$$x_i \in W$$
 and $\sigma(x_i) \leq \omega(e)$, or

2
$$x_j \in W$$
 and $\sigma(x_j) \leq \omega(e)$.

Set
$$(W^{\sigma})S = (x_i^{\sigma(x_i)} \mid x_i \in W)S$$
.

Example



This weighted vertex cover is minimal: no vertices can be unboxed, and no weights (exponents) can be increased.

Decompositions of Weighted Edge Ideals

Theorem (Paulsen-SW '13)

We have (irredundant) irreducible decompositions

$$I(G_{\omega}) = \bigcap_{W^{\sigma}} (W^{\sigma})S = \bigcap_{W^{\sigma} min} (W^{\sigma})S$$

Decompositions of Weighted Edge Ideals

Theorem (Paulsen-SW '13)

We have (irredundant) irreducible decompositions

$$I(G_{\omega}) = igcap_{W^{\sigma}}(W^{\sigma})S = igcap_{W^{\sigma}\ min}(W^{\sigma})S$$

$$\begin{aligned} \mathbf{G}_{\omega} = & x_1 \frac{3}{2} x_2 \frac{1}{2} x_3 \\ & \mathbf{a}_1 \\ & \mathbf{a}_2 \\ & \mathbf{a}_4 \\ & \mathbf{a}_5 \\ & \mathbf{a}_6 \end{aligned}$$

$$I(G_{\omega}) = (x_1^2, x_2, x_3^5) S \cap (x_1^2, x_2^4, x_3) S \cap (x_1^2, x_2, x_6^5) S$$

$$\cap (x_1^2, x_3, x_5^4) S \cap (x_2, x_3^5, x_4^2) S \cap (x_2^3, x_3, x_4^2) S$$

$$\cap (x_2, x_4^2, x_6^5) S \cap (x_1^3, x_2^4, x_3, x_4^2) S \cap (x_1^3, x_3, x_4^2, x_5^4) S$$

Decompositions of Weighted Edge Ideals

Theorem (Paulsen-SW '13)

G

We have (irredundant) irreducible decompositions

$$I(G_{\omega}) = \bigcap_{W^{\sigma}} (W^{\sigma})S = \bigcap_{W^{\sigma} min} (W^{\sigma})S$$

$$\hat{B}_{\omega} = \begin{array}{ccc} x_1^2 & -\frac{3}{2} & x_2 & -\frac{1}{2} & x_3^1 \\ 2 & & & & & & & \\ x_4 & & & & & & & \\ x_4 & & & & & & & x_6. \end{array}$$

$$I(G_{\omega}) = (x_1^2, x_2, x_3^5) S \cap (x_1^2, x_2^4, x_3) S \cap (x_1^2, x_2, x_6^5) S$$
$$\cap (x_1^2, x_3, x_5^4) S \cap (x_2, x_3^5, x_4^2) S \cap (x_2^3, x_3, x_4^2) S$$
$$\cap (x_2, x_4^2, x_6^5) S \cap (x_1^3, x_2^4, x_3, x_4^2) S \cap (x_1^3, x_3, x_4^2, x_5^4) S$$

Theorem (Paulsen-SW '13)

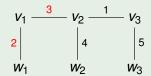
If T_{ω} is a weighted tree, then $S/I(T_{\omega})$ is Cohen-Macaulay if and only if $I(T_{\omega})$ is unmixed, if and only if T is a suspension of a tree Γ such that for each edge $v_i v_j$ in Γ one has $\omega(v_i v_j) \leq \min\{\omega(v_i w_i), \omega(v_j w_j)\}.$

Theorem (Paulsen-SW '13)

If T_{ω} is a weighted tree, then $S/I(T_{\omega})$ is Cohen-Macaulay if and only if $I(T_{\omega})$ is unmixed, if and only if T is a suspension of a tree Γ such that for each edge $v_i v_j$ in Γ one has $\omega(v_i v_j) \leq \min\{\omega(v_i w_i), \omega(v_j w_j)\}.$

Example

non-CM



Theorem (Paulsen-SW '13)

If T_{ω} is a weighted tree, then $S/I(T_{\omega})$ is Cohen-Macaulay if and only if $I(T_{\omega})$ is unmixed, if and only if T is a suspension of a tree Γ such that for each edge $v_i v_j$ in Γ one has $\omega(v_i v_j) \leq \min\{\omega(v_i w_i), \omega(v_j w_j)\}.$

non-CM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
СМ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Definition (Kubik-SW '13)

Fix an integer $r \ge 1$. The weighted *r*-path ideal $I_r(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is the ideal of *S* generated by all monomials

$$x_{i_0}^{\omega(x_{i_0}x_{i_1})}x_{i_1}^{\max(\omega(x_{i_0}x_{i_1}),\omega(x_{i_1}x_{i_2}))}\cdots x_{i_{r-1}}^{\max(\omega(x_{i_{r-2}}x_{i_{r-1}}),\omega(x_{i_{r-1}}x_{i_r}))}x_{i_r}^{\omega(x_{i_{r-1}}x_{i_r})}$$

such that $x_{i_0}x_{i_1}\cdots x_{i_{r-1}}x_{i_r}$ is a path in *G*.

Definition (Kubik-SW '13)

Fix an integer $r \ge 1$. The weighted *r*-path ideal $I_r(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is the ideal of *S* generated by all monomials

$$x_{i_0}^{\omega(x_{i_0}x_{i_1})}x_{i_1}^{\max(\omega(x_{i_0}x_{i_1}),\omega(x_{i_1}x_{i_2}))}\cdots x_{i_{r-1}}^{\max(\omega(x_{i_{r-2}}x_{i_{r-1}}),\omega(x_{i_{r-1}}x_{i_r}))}x_{i_r}^{\omega(x_{i_{r-1}}x_{i_r})}$$

such that $x_{i_0}x_{i_1}\cdots x_{i_{r-1}}x_{i_r}$ is a path in *G*.

Example

• If r = 1, then this is $I(G_{\omega})$.

Definition (Kubik-SW '13)

Fix an integer $r \ge 1$. The weighted *r*-path ideal $I_r(G_{\omega}) \subseteq S$ of a weighted graph G_{ω} is the ideal of *S* generated by all monomials

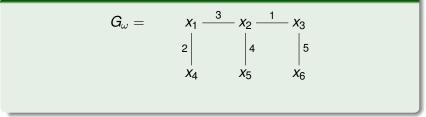
$$x_{i_{0}}^{\omega(x_{i_{0}}x_{i_{1}})}x_{i_{1}}^{\max(\omega(x_{i_{0}}x_{i_{1}}),\omega(x_{i_{1}}x_{i_{2}}))}\cdots x_{i_{r-1}}^{\max(\omega(x_{i_{r-2}}x_{i_{r-1}}),\omega(x_{i_{r-1}}x_{i_{r}}))}x_{i_{r}}^{\omega(x_{i_{r-1}}x_{i_{r}})}$$

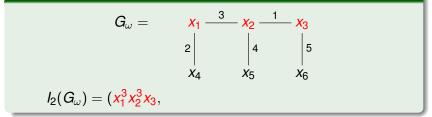
such that $x_{i_0}x_{i_1}\cdots x_{i_{r-1}}x_{i_r}$ is a path in *G*.

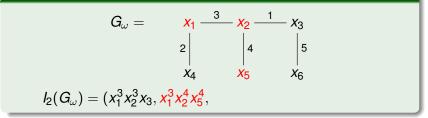
Example

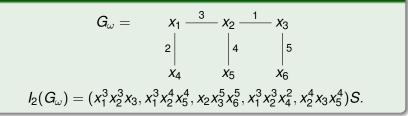
1) If
$$r = 1$$
, then this is $I(G_{\omega})$.

If ω = 1 and G is a tree, then this is Conca's I_r(G), generated by all the *r*-paths in G.









Example

$$G_{\omega} = \begin{array}{ccc} x_{1} & \xrightarrow{3} & x_{2} & \xrightarrow{1} & x_{3} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ I_{2}(G_{\omega}) = (x_{1}^{3}x_{2}^{3}x_{3}, x_{1}^{3}x_{2}^{4}x_{5}^{4}, x_{2}x_{3}^{5}x_{6}^{5}, x_{1}^{3}x_{2}^{3}x_{4}^{2}, x_{2}^{4}x_{3}x_{5}^{4})S. \end{array}$$

Theorem (Kubik-SW '13)

We have (irredundant) irreducible decompositions

$$I_r(G_\omega) = igcap_{W^\sigma}(W^\sigma)S = igcap_{W^\sigma} \min(W^\sigma)S$$

Theorem (Kubik-SW '13)

Let G_{ω} be a weighted tree with no r-pathless leaves. TFAE:

- (i) $I_r(G_{\omega})$ is Cohen-Macaulay;
- (ii) $I_r(G_{\omega})$ is unmixed; and
- (iii) G_{ω} is an *r*-path suspension of a weighted tree Γ_{μ} s.t. for all $v_i v_j \in E(\Gamma_{\mu})$ one has $\omega(v_i v_j) \leq \min\{\omega(v_i y_{i,1}), \omega(v_j y_{j,1})\}.$

Theorem (Kubik-SW '13)

Let G_{ω} be a weighted tree with no r-pathless leaves. TFAE:

- (i) $I_r(G_{\omega})$ is Cohen-Macaulay;
- (ii) $I_r(G_{\omega})$ is unmixed; and
- (iii) G_{ω} is an *r*-path suspension of a weighted tree Γ_{μ} s.t. for all $v_i v_j \in E(\Gamma_{\mu})$ one has $\omega(v_i v_j) \leq \min\{\omega(v_i y_{i,1}), \omega(v_j y_{j,1})\}.$

